If it's not what You are looking for type in the equation solver your own equation and let us solve it.
c^2-7c-120=0
a = 1; b = -7; c = -120;
Δ = b2-4ac
Δ = -72-4·1·(-120)
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{529}=23$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-23}{2*1}=\frac{-16}{2} =-8 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+23}{2*1}=\frac{30}{2} =15 $
| 3(2x+3)=4x+11 | | 4x-17=3x= | | 7x+2x=31 | | 1(8x-2)=9x-9 | | 57=(15.7)(x) | | 12+|2x–2|=20 | | 8x2+7x-120=0 | | X2+5x-120=0 | | B=−2t+10 | | 0.9x^2-2x+0.9=0 | | X-7x9=108 | | 4n-1=T | | -4(6y-1)-2=-12(2y+4)+50 | | 17-5(2x-9)=1(-6x+10)+8 | | 28^2x+7=28x | | 4y-3/5=5 | | X=-4=3x+8 | | 3^(n+2)=45 | | 3(n+2)=45 | | 5a=2(2a-2) | | 5x+8=4x-11 | | 15.8q=5(–5.4q−19.48)+11.8 | | 3z+11=16 | | 2/0.6=12.3/n | | 12/n=21/14 | | (3/2)^x-1=(27/8)^x | | 3x+1=300000x | | 5(x+11)=30 | | 8x³+4x²-18x-9=0 | | 3x-9+2x=-12 | | –7+3n=–5n+9 | | 8/n=3/2 |